1n^2+12n+3=0

Simple and best practice solution for 1n^2+12n+3=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1n^2+12n+3=0 equation:



1n^2+12n+3=0
We add all the numbers together, and all the variables
n^2+12n+3=0
a = 1; b = 12; c = +3;
Δ = b2-4ac
Δ = 122-4·1·3
Δ = 132
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{132}=\sqrt{4*33}=\sqrt{4}*\sqrt{33}=2\sqrt{33}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-2\sqrt{33}}{2*1}=\frac{-12-2\sqrt{33}}{2} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+2\sqrt{33}}{2*1}=\frac{-12+2\sqrt{33}}{2} $

See similar equations:

| 3x+8/5-7=x+9 | | 6x=22+5x | | x+40+3×-20=180 | | 16x-6=9- | | -2x+17=27 | | 3(2x+5)=-4(-x+2) | | 7v+33=9(v+5) | | (128-x)+x+52=180 | | 6x^2/36x=216 | | 6(-x+8)=7(x-2) | | 16n+4=180 | | -7x+42=28 | | 53k+21=180 | | 9x+11=7x+28 | | 53k+17=180 | | 53k-32=180 | | 53k-22=180 | | 18-12=3x | | 5=j/4 | | y-3=-33 | | -4=-g/5 | | 15=-5t | | n.2+9=15 | | -9=-5+u | | -5=f/5 | | 5.8j=-10 | | (3n)/(n-2)=(3n)/(n-2) | | -5=-f/2 | | 3x12+x12+x=90 | | 3n/n-2=3n/n-2 | | 2x+10+x+4=180 | | 3x+7+x+11=180 |

Equations solver categories